Ground-State Charge Transfer: Lithium-Benzene and the Role of Hartree-Fock Exchange.
نویسندگان
چکیده
Most approximations to the exchange-correlation functional of Kohn-Sham density functional theory lead to delocalization errors that undermine the description of charge-transfer phenomena. We explore how various approximate functionals and charge-distribution schemes describe ground-state atomic-charge distributions in the lithium-benzene complex, a model system of relevance to carbon-based supercapacitors. To understand the trends, we compare Hartree-Fock (HF) and correlated post-HF calculations, confirming that the HOMO-LUMO gap is narrower in semilocal functionals but widened by hybrid functionals with large fractions of HF exchange. For semilocal functionals, natural bond orbital (NBO) and Mulliken schemes yield opposite pictures of how charge transfer occurs. In PBE, for example, when lithium and benzene are <1.5 Å apart, NBO yields a positive charge on the lithium atom, but the Mulliken scheme yields a negative charge. Furthermore, the partial charges in conjugated materials depend on the interplay between the charge-distribution scheme employed and the underlying exchange-correlation functional, being critically sensitive to the admixture of HF exchange. We analyze and explain why this happens, discuss implications, and conclude that hybrid functionals with an admixture of about one-fourth of HF exchange are particularly useful in describing charge transfer in the lithium-benzene model.
منابع مشابه
A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states.
We introduce a hybrid density functional that asymptotically incorporates full Hartree-Fock exchange, based on the long-range-corrected exchange-hole model of Henderson et al. [J. Chem. Phys. 128, 194105 (2008)]. The performance of this functional, for ground-state properties and for vertical excitation energies within time-dependent density functional theory, is systematically evaluated, and o...
متن کاملNBO analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via DFT method
In the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) Single Walled Carbon Nanotubes in the ground state have done by using the Hartree-Fock and density functional theory DFT-B3LYP/6-31G* level. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO (natural bond orbital) analysis. These methods a...
متن کاملNBO analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via DFT method
In the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) Single Walled Carbon Nanotubes in the ground state have done by using the Hartree-Fock and density functional theory DFT-B3LYP/6-31G* level. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO (natural bond orbital) analysis. These methods a...
متن کاملA semiempirical long-range corrected exchange correlation functional including a short-range Gaussian attenuation (LCgau-B97)
We applied an improved long-range correction scheme including a short-range Gaussian attenuation (LCgau) to the Becke97 (B97) exchange correlation functional. In the optimization of LCgau-B97 functional, the linear parameters are determined by least squares fitting. Optimizing μ parameter (0.2) that controls long-range portion of Hartree-Fock (HF) exchange to excitation energies of large molecu...
متن کاملCalculation of Quasi-one-dimensional Interacting Electron Gas Using the Hartree-Fock Method
In this paper, the Hartree-Fock method has been formulated to investigate some of the ground state properties of quasi-one-dimensional interacting electron gas in the presence of the magnetic field. The bare coulomb interaction between electrons has been assumed. For this system, we have also computed some of its thermodynamic and magnetic properties such as the energy, pressure, incompressibil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره شماره
صفحات -
تاریخ انتشار 2016